Package ‘bujar’

October 19, 2020

Type Package

Title Buckley-James Regression for Survival Data with High-Dimensional Covariates

Version 0.2-9

Date 2020-10-19

Author Zhu Wang <https://orcid.org/0000-0002-0773-0052> and others (see COPYRIGHTS)

Maintainer Zhu Wang <wangz1@uthscsa.edu>

Description Buckley-James regression for right-censoring survival data with high-dimensional covariates. Implementations for survival data include boosting with componentwise linear least squares, componentwise smoothing splines, regression trees and MARS. Other high-dimensional tools include penalized regression for survival data. See Wang and Wang (2010) <doi:10.2202/1544-6115.1550>.

Imports mda, mpath, mboost, gbm, earth, elasticnet, rms, methods, modeltools, bst, parallel, survival

Depends R (>= 2.10)

Suggests TH.data, R.rsp, gridExtra

VignetteBuilder R.rsp

License GPL-2

LazyLoad yes

NeedsCompilation no

Repository CRAN

Date/Publication 2020-10-19 21:40:05 UTC

R topics documented:

bujar ... 2
chop ... 5
rchop ... 6

Index 8
Description

Buckley-James regression for right-censoring survival data with high-dimensional covariates. Including L_2 boosting with componentwise linear least squares, componentwise P-splines, regression trees. Other Buckley-James methods including elastic net, MCP, SCAD, MARS and ACOSSO (ACOSSO not supported for the current version).

Usage

```r
bujar(y, cens, x, valdata = NULL, degree = 1, learner = "linear.regression",
center=TRUE, mimpu = NULL, iter.bj = 20, max.cycle = 5, nu = 0.1, mstop = 50,
twin = FALSE, mstop2= 100, tuning = TRUE, cv = FALSE, nfold = 5, method = "corrected",
vimpint = TRUE,gamma = 3, lambda=NULL, whichlambda=NULL, lamb = 0, s = 0.5, nk = 4,
wt.pow = 1, theta = NULL, rel.inf = FALSE, tol = .Machine$double.eps, n.cores= 2,
rng=123, trace = FALSE)
```

Arguments

- `y`: survival time
- `cens`: censoring indicator, must be 0 or 1 with 0=alive, 1=dead
- `x`: covariate matrix
- `valdata`: test data, which must have the first column as survival time, second column as censoring indicator, and the remaining columns similar to same x.
- `degree`: mars/tree/linear regression degree of interaction; if 2, second-order interaction, if degree=1, additive model;
- `learner`: methods used for BJ regression.
- `center`: center covariates
- `mimpu`: initial estimate. If TRUE, mean-imputation; FALSE, imputed with the marginal best variable linear regression; if NULL, 0.
- `iter.bj`: number of B-J iteration
- `max.cycle`: max cycle allowed
- `nu`: step-size boosting parameter
- `mstop`: boosting tuning parameters. It can be one number or have the length `iter.bj+max.cycle`. If cv=TRUE, then mstop is the maximum number of tuning parameter
- `twin`: logical, if TRUE, twin boosting
- `mstop2`: twin boosting tuning parameter
- `tuning`: logical value. if TRUE, the tuning parameter will be selected by cv or AIC/BIC methods. Ignored if twin=TRUE for which no tuning parameter selection is implemented
cv logical value. If TRUE, cross-validation for tuning parameter, only used if tuning=TRUE. If tuning=FALSE or twin=TRUE, then ignored

nfold number of fold of cv

method boosting tuning parameter selection method in AIC

vimprint logical value. If TRUE, compute variable importance and interaction measures for MARS if learner="mars" and degree > 1.

gamma MCP, or SCAD gamma tuning parameter

lambda MCP, or SCAD lambda tuning parameter

whichlambda which lambda used for MCP or SCAD lambda tuning parameter

lamb elastic net lambda tuning parameter, only used if learner="enet"

s the second enet tuning parameter, which is a fraction between (0, 1), only used if learner="enet"

nk number of basis function for learner="mars"

wt.pow not used but kept for historical reasons, only for learner=ACOSSO. This is a parameter (power of weight). It might be chosen by CV from c(0, 1.0, 1.5, 2.0, 2.5, 3.0). If wt.pow=0, then this is COSSO method

theta For learner="acosso", not used now. A numerical vector with 0 or 1. 0 means the variable not included and 1 means included. See Storlie et al. (2009).

rel.inf logical value. If TRUE, variable importance measure and interaction importance measure computed

tol convergency criteria

ncores The number of CPU cores to use. The cross-validation loop will attempt to send different CV folds off to different cores. Used for learner="tree"

rng a number to be used for random number generation in boosting trees

trace logical value. If TRUE, print out interim computing results

Details

Buckley-James regression for right-censoring survival data with high-dimensional covariates. Including L_2 boosting with componentwise linear least squares, componentwise P-splines, regression trees. Other Buckley-James methods including elastic net, SCAD and MCP, learner="enet" and learner="enet2" use two different implementations of LASSO. Some of these methods are discussed in Wang and Wang (2010) and the references therein. Also see the references below.

Value

x original covariates

y survival time

cens censoring indicator

ynew imputed y

yhat estimated y from ynew

pred.bj estimated y from the testing sample
res.fit model fitted with the learner
learner original learner used
degree = 1, additive model, degree=2, second-order interaction
mse MSE at each BJ iteration, only available in simulations, or when valdata provided
mse.bj MSE from training data at the BJ termination
mse.bj.val MSE with valdata
mse.all a vector of MSE for uncensoring data at BJ iteration
nz.bj.iter number of selected covariates at each BJ iteration
nz.bj number of selected covariates at the claimed BJ termination
xselect a vector of dimension of covariates, either 1 (covariate selected) or 0 (not selected)
coef.bj estimated coefficients with linear model
vim a vector of length of number of column of x, variable importance, between 0 to 100
interactions measure of strength of interactions
ybstdiff largest absolute difference of estimated y. Useful to monitor convergency
ybstcon a vector with length of BJ iteration each is a convergency measure
cycleperiod number of cycle of BJ iteration
cycle.coef.diff within cycle of BJ, the maximum difference of coefficients for BJ boosting
nonconv logical value. if TRUE, non-convergency
fnorm2 value of L_2 norm, can be useful to access convergency
mselect a vector of length of BJ iteration, each element is the tuning parameter mstop
contype 0 (converged), 1, not converged but cycle found, 2, not converged and max iteration reached.

Author(s)
Zhu Wang

References

Examples

```r
data("wpbc", package = "TH.data")
wpbc2 <- wpbc[, 1:12]
wpbc2$status <- as.numeric(wpbc2$status) - 1
fit <- bujar(y=log(wpbc2$time), cens=wpbc2$status, x= wpbc2[, -(1:2)])
print(fit)
coef(fit)
pr <- predict(fit)
plot(fit)
fit <- bujar(y=log(wpbc2$time), cens=wpbc2$status, x= wpbc2[, -(1:2)], tuning = TRUE)
## Not run:
fit <- bujar(y=log(wpbc2$time), cens=wpbc2$status, x=wpbc2[, -(1:2)], learner="pspline")
fit <- bujar(y=log(wpbc2$time), cens=wpbc2$status, x=wpbc2[, -(1:2)],
learner="tree", degree=2)
### select tuning parameter for "enet"
tmp <- gcv.enet(y=log(wpbc2$time), cens=wpbc2$status, x=wpbc2[, -(1:2)])
fit <- bujar(y=log(wpbc2$time), cens=wpbc2$status, x=wpbc2[, -(1:2)], learner="enet",
lamb = tmp$lambda, s=tmp$s)
fit <- bujar(y=log(wpbc2$time), cens=wpbc2$status, x=wpbc2[, -(1:2)], learner="mars",
degree=2)
summary(fit)
## End(Not run)
```

chop

Survival of CHOP for diffuse large B cell lymphoma

Description

Microarray data for DLBCL patients undergoing CHOP treatment.

Usage

```r
data(chop)
```
Format
The format is: num [1:181, 1:3835]

Details
Microarray data of DLBCL of 181 patients treated with a combination chemotherapy with cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP). The original data have 54675 probe sets or covariates. Due to the nature of high-dimensional data, a preselection procedure was conducted to filter out the genes with lower variations if a sample variance for a gene was smaller than the 10th percentile for that gene. The first column if the survival times. The second column is an indicator whether an the survival time was observed or right censoring occurred. 0=alive, 1=dead. There are 3833 genes after the filtering process.

Source

Examples
data(chop)
str(chop)

rchop Survival of R-CHOP for diffuse large B cell lymphoma

Description
Microarray data for DLBCL patients undergoing R-CHOP treatment.

Usage
data(rchop)

Format
The format is: num [1:233, 1:3835]

Details
Microarray data of DLBCL of 233 patients treated with the current gold standard R-CHOP including rituxima immunotherapy in addition to the chemotherapy CHOP. The original data have 54675 probe sets or covariates. Due to the nature of high-dimensional data, a preselection procedure was conducted to filter out the genes to match those in chop. The first column if the survival times. The second column is an indicator whether an the survival time was observed or right censoring occurred. 0=alive, 1=dead. There are 3833 same genes as in chop. The data set is used to validate the prediction accuracy for models developed using training data chop.
Source

Examples

```r
data(rchop)
str(rchop)
```
Index

* datasets
 chop, 5
 rchop, 6
bujar, 2
chop, 5
plot.bujar (bujar), 2
print.bujar (bujar), 2
rchop, 6
summary.bujar (bujar), 2