Package ‘gplsim’

February 11, 2023

Type Package

Title Spline Estimation for GPLSIM

Version 1.0.0

Date 2023-02-11

License GPL-2

Encoding UTF-8

Depends R (>= 3.6.0)

Imports mgcv, stats, minpack.lm

LazyData true

RoxygenNote 7.2.1

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Tianhai Zu [aut, trl, cre], Yan Yu [aut]

Maintainer Tianhai Zu <zuti@mail.uc.edu>

Repository CRAN

Date/Publication 2023-02-11 16:50:02 UTC

R topics documented:

add_sim_bound ... 2
air ... 3
generate_data ... 4
gplsim .. 4
add_sim_bound

function dedicated to add simulation standard error bound, in development draw the bound to current plot

Description

function dedicated to add simulation standard error bound, in development draw the bound to current plot

Usage

```
add_sim_bound(
    data,
    family = gaussian(),
    M = 200,
    n = 1000,
    true.theta = c(1, 1, 1)/sqrt(3)
)
```

Arguments

data a list of simulated data
family default is gaussian()
M number of simulations
n sample size
true.theta the true coefficients
Description

This dataset contains four variables: The concentration of the air pollutant ozone, wind speed, temperature and radiation. All of them are daily measurements for 111 days. Usually the concentration of the air pollutant ozone serves as the response variable while the other three are predictors.

Usage

data("air")

Format

A data frame with 111 observations on the following 4 variables.

- ozone: a numeric vector in cube root ppb
- radiation: a numeric vector in langley
- temperature: a numeric vector in degrees F
- wind_speed: a numeric vector in mph

Examples

data(air)
y=air$ozone # response
X=as.matrix(air[,3:4]) # single index term ;
Z=air[,2] # partially linear term ;
result <- gplsim(y,X,Z=Z,family = gaussian,k=10)
result$theta
result$coefficients
summary(result)

Or you can try different spline basis
result <- gplsim(y,X,Z=Z,family = gaussian,bs="tp",k=10)
result$theta
result$coefficients
summary(result)
generate_data

Data generation function for simulation and demonstration A sine-bump setting has been employed.

Usage

```r
generate_data(
  n,
  true.theta = c(1, 1, 1)/sqrt(3),
  family = "gaussian",
  ncopy = 1
)
```

Arguments

- `n` sample size
- `true.theta` true single-index coefficients, default is `c(1,1,1)/sqrt(3)` for setting 1 and `c(1,2)/sqrt(5)` for other settings
- `family` chose from "gaussian", "binomial" or "poisson".
- `ncopy` generates multiple copies of data for Monte Carlo simulations

Value

- `X` single index predictors
- `Y` response variables, a list
- `Z` partial linear predictor(s)
- `single_index_values` single index term

gplsim

Function to fit generalized partially linear single-index models via penalized splines

Description

This function employs penalized spline (P-spline) to estimate generalized partially linear single index models, which extend the generalized linear models to include nonlinear effect for some predictors.

This function add formula interface to gplsim function
Usage

gplsim(...)

Default S3 method:
gplsim(
 Y = Y,
 X = X,
 Z = Z,
 family = gaussian(),
 penalty = TRUE,
 profile = TRUE,
 user.init = NULL,
 bs = "ps",
 ...
)

S3 method for class 'formula'
gplsim(
 formula,
 data,
 family = gaussian(),
 penalty = TRUE,
 profile = TRUE,
 user.init = NULL,
 bs = "ps",
 ...
)

Arguments

... includes optional arguments user can pass to mgcv::gam or glm, such as k, which is the dimension of the basis of the smooth term and m, which is the order of the penalty for the smooth term. Others include: scale The optional argument scale is a numeric indicator with a default value set to -1. Any negative value including -1 indicates that the scale of response distribution is unknown, thus need to be estimated. Another option is 0 signaling scale of 1 for Poisson and binomial distribution and unknown for others. Any positive value will be taken as the known scale parameter. smooth_selection The optional argument smooth_selection is another character variable that specifies the criterion used in the selection of a smoothing parameter. The supported criteria include "GCV.Cp", "GACV.Cp", "ML", "P-ML", "P-REML" and "REML", while the default criterion is "GCV.Cp".

Y Response variable, should be a vector.

X Single index covariates.

Z Partially linear covariates.

family A family object: a list of functions and expressions for defining link and variance functions. Families supported are binomial, gaussian. The default
family is gaussian.

penalty
Whether use penalized splines or un-penalized splines to fit the model. The default is TRUE.

profile
profile is a logical variable that indicates whether the algorithm with profile likelihood or algorithm with NLS procedure should be used. The default algorithm is set to algorithm with profile likelihood.

user.init
The user.init is a numeric vector of the same length as the dimensionality of single index predictors. The users can use this argument to pass in any appropriate user-defined initial single-index coefficients based on prior information or domain knowledge. The default value is NULL.

bs
bs is a character variable that specifies the spline basis in the estimation of unknown univariate function of single index. Default is P-splines.

formula
A model formula;

data
A data matrix containing the variables in the formula.

Details
For formula method, see ?gplsim.formula

Value
theta Estimation of Theta
coefficients the coefficients of the fitted model. Parametric coefficients are first, followed by coefficients for each spline term in turn.

... See GAM object

theta Estimation of Theta
coefficients the coefficients of the fitted model. Parametric coefficients are first, followed by coefficients for each spline term in turn.

... See GAM object

Examples

```r
# parameter settings
n=200
true.theta = c(1, 1, 1)/sqrt(3)
# Gaussian case
# This function generate a plain sin bump model with gaussian response.
data <- generate_data(n,true.theta=true.theta,family="gaussian")
y=data$Y       # continous response
X=data$X      # single index term ;
Z=data$Z      # partially linear term ;
result <- gplsim(y,X,Z,family = gaussian)
result$theta
result$coefficients
summary(result)
```
Function that plot fitted curve for the unknown univariate function for single index term

Description
Function that plot fitted curve for the unknown univariate function for single index term

Usage
plot_si(
 x,
 family = gaussian(),
 ylab = "mean",
 yscale = NULL,
 plot_data = FALSE
)

Arguments
x the gam/gplsm fitted object
family default is gaussian()
ylab y label
yscale scale of y
plot_data controls whether to plot the data as points

Value
NULL single-index plot

Description
prediction method function for the tr smooth class

Usage
Predict.matrix.tr.smooth(object, data)
Arguments

object smooth object for gam class
data the new data to predict on

Value

X the prediction matrix

print.summary.gplsim Print Summary function of gplsim object

Description

Print Summary function of gplsim object

Usage

S3 method for class 'summary.gplsim'
print(
 x,
 digits = max(5, getOption("digits") - 3),
 signif.stars = getOption("show.signif.stars"),
 ...
)

Arguments

x the gam/gplsm fitted object
digits controls number of digits printed in output.
signif.stars should significance stars be printed alongside output.
... optional arguments

Value

summarized object with nice format
An internal function to optimization and fitting. Don’t use it solely.

Description

An internal function to optimization and fitting. Don’t use it solely.

Usage

```r
si(
    alpha,
    y,
    x,
    z,
    opt = TRUE,
    smooth_selection,
    fam,
    bs = "ps",
    fx = FALSE,
    scale = scale,
    ...
)
```

Arguments

- `alpha` single-index coefficients
- `y` Response variable, should be a vector.
- `x` Single index covariates.
- `z` Partially linear covariates.
- `opt` see ?gplsim
- `smooth_selection` see ?gplsim
- `fam` see ?gplsim
- `bs` see ?gplsim
- `fx` see ?gplsim
- `scale` see ?gplsim
- `...` includes optional arguments user can pass to mgcv::gam or glm, such as `k`, which is the dimension of the basis of the smooth term and `m`, which is the order of the penalty for the smooth term

Value

- `b` fitted gam object
smooth.construct.tr.smooth.spec

supporting function to make tr smooth

Description

supporting function to make tr smooth

Usage

```
smooth.construct.tr.smooth.spec(object, data, knots)
```

Arguments

- `object`: smooth object for gam class
- `data`: the new data to predict on
- `knots`: knots

Value

tr smooth object

summary.gplsim

Summary function of gplsim object

Description

Summary function of gplsim object

Usage

```
## S3 method for class 'gplsim'
summary(object, ...)
```

Arguments

- `object`: the gam/gplsm fitted object
- `...`: optional arguments

Value

gplsim_obj a list of summary information for a fitted gplsim object, which extends on gam object.
Index

* datasets
 air, 3
 add_sim_bound, 2
 air, 3
 generate_data, 4
 gplsim, 4
 plot_si, 7
 Predict.matrix.tr.smooth, 7
 print.summary.gplsim, 8
 si, 9
 smooth.construct.tr.smooth.spec, 10
 summary.gplsim, 10