Package 'mlr3fairness'

May 5, 2023

Type Package
Title Fairness Auditing and Debiasing for 'mlr3'
Version 0.3.2

Description Integrates fairness auditing and bias mitigation methods for the 'mlr3' ecosystem. This includes fairness metrics, reporting tools, visualizations and bias mitigation techniques such as "Reweighing" described in 'Kamiran, Calders' (2012) <doi:10.1007/s10115-011-0463-8> and "Equalized Odds" described in 'Hardt et al.' (2016) <https://papers.nips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf>. Integration with 'mlr3' allows for auditing of ML models as well as convenient joint tuning of machine learning algorithms and debiasing methods.

URL https://mlr3fairness.mlr-org.com,
https://github.com/mlr-org/mlr3fairness

BugReports https://github.com/mlr-org/mlr3fairness/issues
License LGPL-3
Encoding UTF-8
LazyData true

Depends R (>= 3.4.0)
Imports checkmate, R6 (>= 2.4.1), data.table (>= 1.13.6), paradox,
mlr3 (>= 0.13.0), mlr3measures, mlr3misc, mlr3pipelines,
mlr3learners, rlang, ggplot2

Suggests testthat (>= 3.1.0), patchwork, rpart, ranger, mlr3viz,
linprog, markdown, knitr, posterdown, kableExtra, fairml, iml

RoxygenNote 7.2.3
Config/testthat/edition 3
Config/testthat/parallel false
VignetteBuilder knitr

NeedsCompilation no

Author Florian Pfisterer [cre, aut] (<https://orcid.org/0000-0001-8867-762X>),
Wei Siyi [aut],
Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>)
Maintainer Florian Pfisterer <pfistererf@googlemail.com>
Repository CRAN
Date/Publication 2023-05-04 23:00:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>adult</td>
<td>2</td>
</tr>
<tr>
<td>compare_metrics</td>
<td>4</td>
</tr>
<tr>
<td>compas</td>
<td>5</td>
</tr>
<tr>
<td>compute_metrics</td>
<td>7</td>
</tr>
<tr>
<td>fairness_accuracy_tradeoff</td>
<td>8</td>
</tr>
<tr>
<td>fairness_prediction_density</td>
<td>10</td>
</tr>
<tr>
<td>fairness_tensor</td>
<td>11</td>
</tr>
<tr>
<td>groupdiff_tau</td>
<td>12</td>
</tr>
<tr>
<td>groupwise_metrics</td>
<td>13</td>
</tr>
<tr>
<td>MeasureFairness</td>
<td>14</td>
</tr>
<tr>
<td>MeasureFairnessComposite</td>
<td>16</td>
</tr>
<tr>
<td>MeasureFairnessConstraint</td>
<td>17</td>
</tr>
<tr>
<td>MeasureSubgroup</td>
<td>19</td>
</tr>
<tr>
<td>mlr_learners_fairness</td>
<td>20</td>
</tr>
<tr>
<td>mlr_measures_fairness</td>
<td>21</td>
</tr>
<tr>
<td>mlr_measures_positive_probability</td>
<td>22</td>
</tr>
<tr>
<td>mlr_pipeops_equalized_odds</td>
<td>23</td>
</tr>
<tr>
<td>mlr_pipeops_explicit_pta</td>
<td>25</td>
</tr>
<tr>
<td>mlr_pipeops_reweighing</td>
<td>27</td>
</tr>
<tr>
<td>report_datasheet</td>
<td>30</td>
</tr>
<tr>
<td>report_fairness</td>
<td>31</td>
</tr>
<tr>
<td>report_modelcard</td>
<td>32</td>
</tr>
<tr>
<td>task_summary</td>
<td>33</td>
</tr>
</tbody>
</table>

Index 34

adult

Adult Dataset

Description

Dataset used to predict whether income exceeds $50K/yr based on census data. Also known as "Census Income" dataset. Train dataset contains 13 features and 30178 observations. Test dataset contains 13 features and 15315 observations. Target column is "target": A binary factor where 1: <=50K and 2: >50K for annual income. The column "sex" is set as protected attribute.

Derived tasks

- adult_train: Original train split for the adult task available at UCI.
- adult_test: Original test split for the adult task available at UCI.
Using Adult - Known Problems

The adult dataset has several known limitations such as its age, limited documentation, and outdated feature encodings (Ding et al., 2021). Furthermore, the selected threshold (income <=50K) has strong implications on the outcome of analysis, such that "In many cases, the $50k threshold understates and misrepresents the broader picture" (Ding et al., 2021). As a result, conclusions w.r.t. real-world implications are severely limited.

We decide to replicate the dataset here, as it is a widely used benchmark dataset and it can still serve this purpose.

Pre-processing

• fnlwgt Remove final weight, which is the number of people the census believes the entry represents
• native-country Remove Native Country, which is the country of origin for an individual
• Rows containing NA in workclass and occupation have been removed.
• Pre-processing inspired by article: @url https://cseweb.ucsd.edu//classes/sp15/cse190-c/reports/sp15/048.pdf

Metadata

• (integer) age: The age of the individuals
• (factor) workclass: A general term to represent the employment status of an individual
• (factor) education: The highest level of education achieved by an individual.
• (integer) education_num: the highest level of education achieved in numerical form.
• (factor) marital_status: marital status of an individual.
• (factor) occupation: the general type of occupation of an individual
• (factor) relationship: whether the individual is in a relationship-
• (factor) race: Descriptions of an individual’s race
• (factor) sex: the biological sex of the individual
• (integer) captain-gain: capital gains for an individual
• (integer) captain-loss: capital loss for an individual
• (integer) hours-per-week: the hours an individual has reported to work per week
• (factor) target: whether or not an individual makes more than $50,000 annually

Source

Examples

library("mlr3")
data("adult_test", package = "mlr3fairness")
data("adult_train", package = "mlr3fairness")
compare_metrics

Compare different metrics

Description

Compare learners with respect to one or multiple metrics. Metrics can but be but are not limited to fairness metrics.

Usage

```r
compare_metrics(object, ...)
```

Arguments

- `object` *(PredictionClassif | BenchmarkResult | ResampleResult)*

 The object to create a plot for.

 - If provided a *(PredictionClassif)*. Then the visualization will compare the fairness metrics among the binary level from protected field through bar plots.

 - If provided a *(ResampleResult)*. Then the visualization will generate the boxplots for fairness metrics, and compare them among the binary level from protected field.

 - If provided a *(BenchmarkResult)*. Then the visualization will generate the boxplots for fairness metrics, and compare them among both the binary level from protected field and the models implemented.

- `...`

 The arguments to be passed to methods, such as:

 - `fairness_measures` *(list of Measure)*

 The fairness measures that will evaluated on object, could be single `Measure` or list of `Measures`. Default measure set to be `msr("fairness.acc")`.

 - `task` *(TaskClassif)*

 The data task that contains the protected column, only required when object is *(PredictionClassif)*.

Value

A `ggplot2` object.

Protected Attributes

The protected attribute is specified as a `col_role` in the corresponding `Task()`:

```r
<Task>$col_roles$pta = "name_of_attribute"
```

This also allows specifying more than one protected attribute, in which case fairness will be considered on the level of intersecting groups defined by all columns selected as a predicted attribute.
Examples

```r
library("mlr3")
library("mlr3learners")

# Setup the Fairness Measures and tasks

# Example 1: A classification task for the compas data set with the protected attribute 'sex'.

# Example 2: A classification task for the compas data set with the protected attribute 'race'. The observations have been filtered, keeping only observations with race "Caucasian" and "African-American". The protected attribute has been set to "race".
```
Frame

R6::R6Class inheriting from TaskClassif.
R6::R6Class inheriting from TaskClassif.

Using COMPAS - Known Problems

The COMPAS dataset was collected as part of the ProPublica analysis of machine bias in criminal sentencing. It is important to note, that using COMPAS is generally discouraged for the following reasons:

- The prediction task derived from this dataset has little connection to actually relevant tasks in the context of risk assessment instruments.
- Collected data and labels suffer from disparate measurement bias.

The dataset should therefore not be used to benchmark new fairness algorithms or measures. For a more in-depth treatment, see Bao et al., 2021: It’s COMPASlicated: The Messy Relationship between RAI Datasets and Algorithmic Fairness Benchmarks. We replicate the dataset here to raise awareness for this issue. Furthermore, similar issues exist across a wide variety of datasets widely used in the context of fairness auditing and we, therefore, consider issues, e.g. derived from disparate measurement bias an important issue in the context of fairness audits.

Pre-processing

- Identifying columns are removed
- Removed the outliers for abs(days_b_screening_arrest) >= 30.
- Removed observations where is_recid != -1.
- Removed observations where c_charge_degree != "O".
- Removed observations where score_text != 'N/A'.
- Factorize the features that are categorical.
- Add length of stay (c_jail_out - c_jail_in) in the dataset.
- Pre-processing Resource: @url https://github.com/propublica/compas-analysis/blob/master/Compas%20Analysis.ipynb

Metadata

- (integer) age : The age of defendants.
- (factor) c_charge_degree : The charge degree of defendants. F: Felony M: Misdemeanor
- (factor) race: The race of defendants.
- (factor) age_cat: The age category of defendants.
- (factor) score_text: The score category of defendants.
- (factor) sex: The sex of defendants.
- (integer) priors_count: The prior criminal records of defendants.
- (integer) days_b_screening_arrest: The count of days between screening date and (original) arrest date. If they are too far apart, that may indicate an error. If the value is negative, that indicate the screening date happened before the arrest date.
compute_metrics

- (integer) decile_score: Indicate the risk of recidivism (Min=1, Max=10)
- (integer) is_recid: Binary variable indicate whether defendant is rearrested at any time.
- (factor) two_year_recid: Binary variable indicate whether defendant is rearrested at within two years.
- (numeric) length_of_stay: The count of days stay in jail.

Construction

```r
mlr_tasks$get("compas")
tsk("compas")

mlr_tasks$get("compas_race_binary")
tsk("compas_race_binary")
```

Source

ProPublica Analysis: https://github.com/propublica/compas-analysis

Examples

```r
library("mlr3")
data("compas", package = "mlr3fairness")
```

`compute_metrics`
Compute metrics for non-mlr3 predictions.

Description

Allows computing metrics for predictions that do not stem from mlr3, and were e.g. being made by models outside of mlr3. Currently only `classif` and `regr` - style predictions are supported.

Usage

```r
compute_metrics(data, target, protected_attribute, prediction, metrics = NULL)
```

Arguments

- `data`
 (data.table)
 The dataset used for predicting.

- `target`
 (character)
 The name of the target variable. Must be available in data.
The name(s) of the protected attributes(s). Must be available in data.

A vector containing predictions.

(List of) mlr3 metrics to apply.

The protected attribute is specified as a col_role in the corresponding Task():
<Task>col_rolespta = "name_of_attribute"
This also allows specifying more than one protected attribute, in which case fairness will be considered on the level of intersecting groups defined by all columns selected as a predicted attribute.

library("mlr3")
Get adult data as a data.table
train = tsk("adult_train")$data()
mod = rpart::rpart(target ~ ., train)

Predict on test data
test = tsk("adult_test")$data()
yhat = predict(mod, test, type = "vector")

Convert to a factor with the same levels
yhat = as.factor(yhat)
levels(yhat) = levels(test$target)

compute_metrics(
 data = test,
target = "target",
prediction = yhat,
protected_attribute = "sex",
metrics = msr("fairness.acc")
)

Plot Fairness Accuracy Trade-offs

Provides visualization wrt. trade-offs between fairness and accuracy metrics across learners and resampling iterations. This can assist in gauging the optimal model from a set of options along with estimates of variance (through individual resampling iterations).
fairness_accuracy_tradeoff

Usage

fairness_accuracy_tradeoff(object, ...)

Arguments

object (PredictionClassif | BenchmarkResult | ResampleResult)
The binary class prediction object that will be evaluated.

- If provided a PredictionClassif. Then only one point will indicate the accuracy and fairness metrics for the current predictions. Requires also passing a Task.
- If provided a ResampleResult. Then the plot will compare the accuracy and fairness metrics for the same model, but different resampling iterations as well as the aggregate indicated by a cross.
- If provided a BenchmarkResult. Then the plot will compare the accuracy and fairness metrics for all models and all resampling iterations. Points are colored according to the learner_id and faceted by task_id. The aggregated score is indicated by a cross.

Arguments to be passed to methods. Such as:

- fairness_measure (Measure)
The fairness measures that will evaluated. Default measure set to be msr("fairness.fpr")
- accuracy_measure (Measure)
The accuracy measure that will evaluated. Default measure set to be msr("classif.acc")
- task (TaskClassif)
The data task that contains the protected column, only required when the class of object is (PredictionClassif)

Value

A 'ggplot2' object.

Protected Attributes

The protected attribute is specified as a col_role in the corresponding Task():
<Task>col_rolespta = "name_of_attribute"
This also allows specifying more than one protected attribute, in which case fairness will be considered on the level of intersecting groups defined by all columns selected as a predicted attribute.

Examples

library("mlr3")
library("mlr3learners")
library("ggplot2")

Setup the Fairness measure and tasks
task = tsk("adult_train")$filter(1:500)
learner = lrn("classif.ranger", predict_type = "prob")
fairness_measure = msr("fairness.tpr")
Example 1 - A single prediction
learner$train(task)
predictions = learner$predict(task)
fairness_accuracy_tradeoff(predictions, fairness_measure, task = task)

Example 2 - A benchmark
design = benchmark_grid(
 tasks = task,
 learners = lrns(c("classif.featureless", "classif.rpart"),
 predict_type = "prob", predict_sets = c("train", "test")),
 resamplings = rsmps("cv", folds = 2)
)
bmr = benchmark(design)
fairness_accuracy_tradeoff(bmr, fairness_measure)

fairness_prediction_density

Probability Density Plot

Description

Visualizes per-subgroup densities across learners, task and class. The plot is a combination of boxplot and violin plot. The y-axis shows the levels in protected columns. And the x-axis shows the predicted probability. The title for the plot will demonstrate which class for predicted probability.

Usage

`fairness_prediction_density(object, ...)`

Arguments

- **object** *(PredictionClassif | ResampleResult | BenchmarkResult)*
The binary class prediction object that will be evaluated. If `PredictionClassif`, a `Task` is required.
- **...**
The arguments to be passed to methods, such as:
 - task (TaskClassif)
 The data task that contains the protected column.
 - type `character`
 The plot type. Either violin or density.

Value

A 'ggplot2' object.

Protected Attributes

The protected attribute is specified as a col_role in the corresponding `Task()`:

```r
<Task>$col_roles$pta = "name_of_attribute"
```

This also allows specifying more than one protected attribute, in which case fairness will be considered on the level of intersecting groups defined by all columns selected as a predicted attribute.
fairness_tensor

Examples

```r
library("mlr3")
library("mlr3learners")

task = tsk("adult_train")$filter(1:500)
learner = lrn("classif.rpart", predict_type = "prob", cp = 0.001)
learner$train(task)

# For prediction
predictions = learner$predict(task)
fairness_prediction_density(predictions, task)

# For resampling
rr = resample(task, learner, rsmp("cv"))
fairness_prediction_density(rr)
```

fairness_tensor

Compute the Fairness Tensor given a Prediction and a Task

Description

A fairness tensor is a list of groupwise confusion matrices.

Usage

```r
fairness_tensor(object, normalize = "all", ...)
## S3 method for class 'data.table'
fairness_tensor(object, normalize = "all", task, ...)
## S3 method for class 'PredictionClassif'
fairness_tensor(object, normalize = "all", task, ...)
## S3 method for class 'ResampleResult'
fairness_tensor(object, normalize = "all", ...)
```

Arguments

- `object` (data.table() | PredictionClassif | ResampleResult)
 A data.table with columns truth and prediction, a PredictionClassif or a ResampleResult.

- `normalize` (character)
 How should the fairness tensor be normalized? "all" normalizes entries by dividing by dataset size, "group" normalizes entries by dividing by group size and "none" does not conduct any normalization at all.

- `task` (TaskClassif)
 A TaskClassif. Needs col_role "pta" to be set.
Value

list() of confusion matrix for every group in "pta".

Protected Attributes

The protected attribute is specified as a col_role in the corresponding Task():

<Task>col_rolespta = "name_of_attribute"

This also allows specifying more than one protected attribute, in which case fairness will be considered on the level of intersecting groups defined by all columns selected as a predicted attribute.

Examples

library("mlr3")
task = tsk("compas")
prediction = lrn("classif.rpart")$train(task)$predict(task)
fairness_tensor(prediction, task = task)

Groupwise Operations

Description

groupdiff_tau() computes \(\min(x/y, y/x)\), i.e. the smallest symmetric ratio between \(x\) and \(y\) that is smaller than 1. If \(x\) is a vector, the symmetric ratio between all elements in \(x\) is computed.

groupdiff_absdiff() computes \(\max(\text{abs}(x - y, y - x))\), i.e. the smallest absolute difference between \(x\) and \(y\). If \(x\) is a vector, the symmetric absolute difference between all elements in \(x\) is computed.

Usage

```
groupdiff_tau(x)
groupdiff_absdiff(x)
groupdiff_diff(x)
```

Arguments

- \(x\) (numeric())
 Measured performance in group 1, 2, ...

Value

A single numeric.
Protected Attributes

The protected attribute is specified as a `col_role` in the corresponding `Task()`:

```r
<Task>$col_roles$pta = "name_of_attribute"
```

This also allows specifying more than one protected attribute, in which case fairness will be considered on the level of intersecting groups defined by all columns selected as a predicted attribute.

Examples

```r
groupdiff_t(1:3)
groupdiff_d(1:3)
groupdiff_abs(1:3)
```

groupwise_metrics

Evaluate a metric on each protected subgroup in a task.

Description

Instantiates one new measure per protected attribute group in a task. Each metric is then evaluated only on predictions made for the given specific subgroup.

Usage

```r
groupwise_metrics(base_measure, task, intersect = TRUE)
```

Arguments

- `base_measure` (**Measure()**) The base metric evaluated within each subgroup.
- `task` **Task** `mlr3::Task()` to instantiate measures for.
- `intersect` **logical** Should multiple pta groups be intersected? Defaults to `TRUE`. Only relevant if more than one `pta` columns are provided.

Value

- `list` List of `mlr3::Measures`.

See Also

- `MeasureSubgroup`
Examples

```r
library("mlr3")
t = tsk("compas")
l = lrn("classif.rpart")
m = groupwise_metrics(msr("classif.acc"), t)
l$train(t)$predict(t)$score(m, t)
```

MeasureFairness
Base Measure for Fairness

Description

This measure extends `mlr3::Measure()` with statistical group fairness: A common approach to quantifying a model's fairness is to compute the difference between a protected and an unprotected group according w.r.t. some performance metric, e.g. classification error (`mlr_measures_classif.ce`) or false positive rate (`mlr_measures_classif.fpr`). The operation for comparison (e.g., difference or quotient) can be specified using the operation parameter, e.g. `groupdiff_absdiff()` or `groupdiff_tau()`.

Composite measures encompassing multiple fairness metrics can be built using `MeasureFairness-Composite`.

Some popular predefined measures can be found in the dictionary `mlr_measures`.

Protected Attributes

The protected attribute is specified as a `col_role` in the corresponding `Task()`:

`<Task>col_rolespta = "name_of_attribute"

This also allows specifying more than one protected attribute, in which case fairness will be considered on the level of intersecting groups defined by all columns selected as a predicted attribute.

Super class

`mlr3::Measure` -> `MeasureFairness`

Public fields

- `base_measure (Measure())`

The base measure to be used by the fairness measures, e.g. `mlr_measures_classif.fpr` for the false positive rate.

- `operation (function())`

The operation used to compute the difference. A function with args 'x' and 'y' that returns a single value. Defaults to abs(x - y).
Methods

Public methods:
• MeasureFairness$new()
• MeasureFairness$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
MeasureFairness$new(
id = NULL,
base_measure,
operation = groupdiff_absdiff,
minimize = TRUE,
range = c(-Inf, Inf)
)

Arguments:
id (character)
The measure’s id. Set to 'fairness.<base_measure_id>' if omitted.
base_measure (Measure())
The base metric evaluated within each subgroup.
operation (function)
The operation used to compute the difference. A function that returns a single value given input: computed metric for each subgroup. Defaults to groupdiff_absdiff.
minimize (logical())
Should the measure be minimized? Defaults to TRUE.
rang (numeric(2))
Range of the resulting measure. Defaults to c(-Inf, Inf).

Method clone(): The objects of this class are cloneable with this method.
Usage:
MeasureFairness$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
MeasureFairnessComposite

Examples

library("mlr3")
Create MeasureFairness to measure the Predictive Parity.
t = tsk("adult_train")
learner = lrn("classif.rpart", cp = .01)
learner$train(t)
measure = msr("fairness", base_measure = msr("classif.ppv"))
predictions = learner$predict(t)
predictions$score(measure, task = t)
Description

Computes a composite measure from multiple fairness metrics and aggregates them using `aggfun` (defaulting to `mean()`).

Protected Attributes

The protected attribute is specified as a `col_role` in the corresponding `Task()`:
<Task>col_rolespta = "name_of_attribute"
This also allows specifying more than one protected attribute, in which case fairness will be considered on the level of intersecting groups defined by all columns selected as a predicted attribute.

Super class

`mlr3::Measure` -> `MeasureFairnessComposite`

Methods

Public methods:

- `MeasureFairnessComposite$new()`
- `MeasureFairnessComposite$clone()`

Method `new()`: Creates a new instance of this R6 class.

Usage:

```r
MeasureFairnessComposite$new(
  id = NULL,
  measures,
  aggfun = function(x) mean(x),
  operation = groupdiff_absdiff,
  minimize = TRUE,
  range = c(-Inf, Inf)
)
```

Arguments:

- `id` (character(1))
 Id of the measure. Defaults to the concatenation of ids in `measure`.
- `measures` (list of `MeasureFairness`)
 List of fairness measures to aggregate.
- `aggfun` (function())
 Aggregation function used to aggregate results from respective measures. Defaults to `sum`.

operation (function())
 The operation used to compute the difference. A function that returns a single value given
input: computed metric for each subgroup. Defaults to groupdiff_absdiff. See MeasureFairness
for more information.
minimize (logical(1))
 Should the measure be minimized? Defaults to TRUE.
range (numeric(2))
 Range of the resulting measure. Defaults to c(-Inf, Inf).

Method clone(): The objects of this class are cloneable with this method.
Usage:
MeasureFairnessComposite$clone(deep = FALSE)
Arguments:
 deep Whether to make a deep clone.

Examples
library("mlr3")
 # Equalized Odds Metric
 MeasureFairnessComposite$new(measures = msrs(c("fairness.fpr", "fairness.tpr")))

 # Other metrics e.g. based on negative rates
 MeasureFairnessComposite$new(measures = msrs(c("fairness.fnr", "fairness.tnr")))

MeasureFairnessConstraint
 Fairness Constraint Measure

Description
 This measure allows constructing for 'constraint' measures of the following form:

 \[\min \text{performance} \text{subject to fairness} < \epsilon \]

Protected Attributes
 The protected attribute is specified as a col_role in the corresponding Task():
 <Task>col_rolespta = "name_of_attribute"
 This also allows specifying more than one protected attribute, in which case fairness will be con-
sidered on the level of intersecting groups defined by all columns selected as a predicted attribute.

Super class
 mlr3::Measure -> MeasureFairnessConstraint
Public fields

performance_measure (Measure())
The performance measure to be used.

fairness_measure (Measure())
The fairness measure to be used.

epsilon (numeric)
Deviation from perfect fairness that is allowed.

Methods

Public methods:

• MeasureFairnessConstraint$new()
• MeasureFairnessConstraint$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
MeasureFairnessConstraint$new(
 id = NULL,
 performance_measure,
 fairness_measure,
 epsilon = 0.01,
 range = c(-Inf, Inf)
)

Arguments:

id (character)
The measure’s id. Set to ‘fairness.<base_measure_id>’ if omitted.

performance_measure (Measure())
The measure used to measure performance (e.g. accuracy).

fairness_measure (Measure())
The measure used to measure fairness (e.g. equalized odds).

epsilon (numeric)
Allowed divergence from perfect fairness. Initialized to 0.01.

range (numeric)
Range of the resulting measure. Defaults to c(-Inf, Inf).

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureFairnessConstraint$clone(deep = FALSE)

Arguments:

depth Whether to make a deep clone.

See Also

mlr_measures_fairness
Examples

```r
# Accuracy subject to equalized odds fairness constraint:
library("mlr3")
t = tsk("adult_train")
learner = lrn("classif.rpart", cp = .01)
learner$train(t)
measure = msr("fairness.constraint", id = "acc_tpr", msr("classif.acc"), msr("fairness.tpr"))
predictions = learner$predict(t)
predictions$score(measure, task = t)
```

MeasureSubgroup

Evaluate a metric on a subgroup

Description

Allows for calculation of arbitrary `mlr3::Measure()`s on a selected sub-group.

Super class

`mlr3::Measure` -> `MeasureSubgroup`

Public fields

- `base_measure` (`Measure()`): The base measure to be used by the fairness measures, e.g. `mlr_measures_classif.fpr` for the false positive rate.
- `intersect` (logical): Should groups be intersected?

Methods

Public methods:

- `MeasureSubgroup$new()`
- `MeasureSubgroup$clone()`

Method `new()`:

Creates a new instance of this R6 class.

Usage:

`MeasureSubgroup$new(id = NULL, base_measure, subgroup, intersect = TRUE)`

Arguments:

- `id` (character)
 - The measure’s id. Set to ’fairness.<base_measure_id>’ if ommited.
- `base_measure` (`Measure()`)
 - The measure used to measure fairness.
subgroup (character)(integer)
 Subgroup identifier. Either value for the protected attribute or position in task$levels.
intersect logical
 Should multiple pta groups be intersected? Defaults to TRUE. Only relevant if more than one pta columns are provided.

Method clone(): The objects of this class are cloneable with this method.
Usage:
MeasureSubgroup$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

See Also
 MeasureFairness, groupwise_metrics

Examples
library("mlr3")
Create MeasureFairness to measure the Predictive Parity.
t = tsk("adult_train")
learner = lrn("classif.rpart", cp = .01)
learner$train(t)
measure = msr("subgroup", base_measure = msr("classif.acc"), subgroup = "Female")
predictions = learner$predict(t)
predictions$score(measure, task = t)
Protected Attributes

The protected attribute is specified as a `col_role` in the corresponding `Task()`:

```R
<Task>$col_roles$pta = "name_of_attribute"
```

This also allows specifying more than one protected attribute, in which case fairness will be considered on the level of intersecting groups defined by all columns selected as a predicted attribute.

Examples

```R
library("mlr3")

# Available learners:
mlr_learners_fairness
```

mlr_measures_fairness
Fairness Measures in mlr3

Description

Fairness Measures in mlr3

Usage

```R
mlr_measures_fairness
```

Format

An object of class `data.table` (inherits from `data.frame`) with 18 rows and 2 columns.

Value

A `data.table` containing an overview of available fairness metrics.

Predefined measures

`mlr3fairness` comes with a set of predefined fairness measures as listed below. For full flexibility, `MeasureFairness` can be used to construct classical group fairness measures based on a difference between a performance metrics across groups by combining a performance measure with an operation for measuring differences. Furthermore `MeasureSubgroup` can be used to measure performance in a given subgroup, or alternatively `groupwise_metrics(measure, task)` to instantiate a measure for each subgroup in a `Task`.

<table>
<thead>
<tr>
<th>key</th>
<th>package</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>regr.fairfrrm</td>
<td>fairml</td>
<td>Scutari et al., 2021</td>
</tr>
<tr>
<td>classif.fairfrrm</td>
<td>fairml</td>
<td>Scutari et al., 2021</td>
</tr>
<tr>
<td>regr.fairzlm</td>
<td>fairml</td>
<td>Zafar et al., 2019</td>
</tr>
<tr>
<td>classif.fairzlm</td>
<td>fairml</td>
<td>Zafar et al., 2019</td>
</tr>
<tr>
<td>regr.fairnclm</td>
<td>fairml</td>
<td>Komiyama et al., 2018</td>
</tr>
</tbody>
</table>
fairness.acc Absolute differences in accuracy across groups
fairness.mse Absolute differences in mean squared error across groups
fairness.fnr Absolute differences in false negative rates across groups
fairness.fpr Absolute differences in false positive rates across groups
fairness.tnr Absolute differences in true negative rates across groups
fairness.tpr Absolute differences in true positive rates across groups
fairness.npv Absolute differences in negative predictive values across groups
fairness.ppv Absolute differences in positive predictive values across groups
fairness.fomr Absolute differences in false omission rates across groups
fairness.fp Absolute differences in false positives across groups
fairness.tp Absolute differences in true positives across groups
fairness.fn Absolute differences in true negatives across groups
fairness.fn Absolute differences in false negatives across groups
fairness.cv Difference in positive class prediction, also known as Calders-Wevers gap or demographic parity
fairness.eod Equalized Odds: Mean of absolute differences between true positive and false positive rates across groups
fairness.pp Predictive Parity: Mean of absolute differences between ppv and npv across groups
fairness.acc_eod=.05 Accuracy under equalized odds < 0.05 constraint
fairness.acc_ppv=.05 Accuracy under ppv difference < 0.05 constraint

Examples

library("mlr3")
Predefined measures:
mlr_measures_fairness$key

mlr_measures_positive_probability

Positive Probability Measure

Description

Return the probability of a positive prediction, often known as 'Calders-Wevers’ gap. This is defined as count of positive predictions divided by the number of observations.

Super class

`mlr3::Measure` -> `MeasurePositiveProbability`

Methods

Public methods:

- `MeasurePositiveProbability$new()`
- `MeasurePositiveProbability$clone()`

Method `new()`: Initialize a Measure Positive Probability Object

Usage:

`MeasurePositiveProbability$new()`
Method clone(): The objects of this class are cloneable with this method.

Usage:

MeasurePositiveProbability$clone(deep = FALSE)

Arguments:

depth Whether to make a deep clone.

Examples

```r
library("mlr3")
# Create Positive Probability Measure
t = tsk("adult_train")
learner = lrn("classif.rpart", cp = .01)
learner$train(t)
measure = msr("classif.pp")
predictions = learner$predict(t)
predictions$score(measure, task = t)
```

mlr_pipeops_equalized_odds

Equalized Odds Debiasing

Description

Fairness post-processing method to achieve equalized odds fairness. Works by randomly flipping a subset of predictions with pre-computed probabilities in order to satisfy equalized odds constraints. **NOTE:** Carefully assess the correct privileged group.

Format

Construction

PipeOpEOd*$new(id = "eod", param_vals = list())

- id(character(1)).
- param_vals(list())

Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc. Instead of a Task, a TaskClassif is used as input and output during training and prediction.

The output during training is the input Task. The output during prediction is a PredictionClassif with partially flipped predictions.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc.
Parameters

- \text{alpha (numeric())}: A number between 0 (no debiasing) and 1 (full debiasing). Controls the debiasing strength by multiplying the flipping probabilities with alpha.
- \text{privileged (character())}: The privileged group.

Fields

Only fields inherited from \text{PipeOpTaskPreproc/PipeOp}.

Methods

Methods inherited from \text{PipeOpTaskPreproc/PipeOp}.

Super class

\text{mlr3pipelines::PipeOp -> PipeOpEOd}

Methods

Public methods:

- \text{PipeOpEOd$new()}
- \text{PipeOpEOd$clone()}

Method \text{new()}: Creates a new instance of this \text{[R6][R6::R6Class][PipeOp]} R6 class.

Usage:
PipeOpEOd$new(id = "EOd", \text{param_vals = list()})

Arguments:
- \text{id character}
 - The PipeOps identifier in the PipeOps library.
- \text{param_vals list}
 - The parameter values to be set. See Parameters.

Method \text{clone()}: The objects of this class are cloneable with this method.

Usage:
PipeOpEOd$clone(deep = FALSE)

Arguments:
- \text{deep Whether to make a deep clone.}

References

See Also

Other PipeOps: mlr_pipeops_explicit_pta, mlr_pipeops_reweighing

Examples

```r
library("mlr3")
library("mlr3pipelines")

eod = po("EOd")
learner_po = po("learner_cv",
  learner = lrn("classif.rpart"),
  resampling.method = "insample"
)

task = tsk("compas")
graph = learner_po %>>% eod
glrn = GraphLearner$new(graph)
glrn$train(task)

# On a Task
glrn$predict(task)

# On newdata
glrn$predict_newdata(task$data(cols = task$feature_names))
```

mlr_pipeops_explicit_pta

PipeOpExplicitPta

Description

Turns the column with column role 'pta' into an explicit separate column prefixed with "..internal_pta". This keeps it from getting changed or adapted by subsequent pipelines that operate on the feature pta.

Format

R6Class object inheriting from PipeOpTaskPreproc/PipeOp.

Construction

PipeOpExplicitPta$new(id = "reweighing", param_vals = list())

- id(character(1)).
- param_vals(list())
Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc. Instead of a Task, a TaskClassif is used as input and output during training and prediction.

The output during training is the input Task with added weights column according to target class. The output during prediction is the unchanged input.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc.

Parameters

The PipeOp does not have any hyperparameters.

Internals

Copies the existing pta column to a new column.

Fields

Methods

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> PipeOpExplicitPta

Methods

Public methods:

- `PipeOpExplicitPta$new()`
- `PipeOpExplicitPta$clone()`

Method new(): Creates a new instance of this [R6][R6::R6Class][PipeOp] R6 class.

Usage:
`PipeOpExplicitPta$new(id = "explicit_pta", param_vals = list())`

Arguments:
- id character
 - The PipeOps identifier in the PipeOps library.
- param_vals list
 - The parameter values to be set. See Parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpExplicitPta$clone(deep = FALSE)

Arguments:
- `deep` Whether to make a deep clone.

See Also
- Other PipeOps: `mlr_pipeops_equalized_odds`, `mlr_pipeops_reweighing`

Examples
```r
library("mlr3")
library("mlr3pipelines")
epta = po("explicit_pta")
new = epta$train(list(tsk("adult_train")))
```

Description
Adjusts class balance and protected group balance in order to achieve fair(er) outcomes.

Format

PipeOpReweighingWeights
Adds a class weight column to the Task that different Learners may be using. In case initial weights are present, those are multiplied with new weights. Caution: Only fairness tasks are supported. Which means tasks need to have protected field. `tskcol_rolespta`.

PipeOpReweighingOversampling
Oversamples a Task for more balanced ratios in subgroups and protected groups. Can be used if a learner does not support weights. Caution: Only fairness tasks are supported. Which means tasks need to have protected field. `tskcol_rolespta`.

Construction
```r
PipeOpReweighing*$new(id = "reweighing", param_vals = list())
```
- `id` (character(1)).
- `param_vals` (list())
Input and Output Channels

Input and output channels are inherited from PipeOpTaskPreproc. Instead of a Task, a TaskClassif is used as input and output during training and prediction.

The output during training is the input Task with added weights column according to target class. The output during prediction is the unchanged input.

State

The $state is a named list with the $state elements inherited from PipeOpTaskPreproc.

Parameters

- alpha (numeric()): A number between 0 (no debiasing) and 1 (full debiasing).

Internals

Introduces, or overwrites, the "weights" column in the Task. However, the Learner method needs to respect weights for this to have an effect.

The newly introduced column is named reweighing.WEIGHTS; there will be a naming conflict if this column already exists and is not a weight column itself.

Fields

Methods

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> PipeOpReweighingWeights

Methods

Public methods:

- PipeOpReweighingWeights$new()
- PipeOpReweighingWeights$clone()

Method new(): Creates a new instance of this [R6][R6::R6Class][PipeOp] R6 class.

Usage:

PipeOpReweighingWeights$new(id = "reweighing_wts", param_vals = list())

Arguments:

- id character
 - The PipeOps identifier in the PipeOps library.
- param_vals list
 - The parameter values to be set.
- alpha: controls the proportion between initial weight (1 if non existing) and reweighing weight. Defaults to 1. Here is how it works:
 \[\text{new
data} = (1 - \alpha) \times 1 + \alpha \times \text{reweighing_weight} \]
 \[\text{final
data} = \text{old
data} \times \text{new
data} \]

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
PipeOpReweighingWeights$clone(deep = FALSE)

Arguments:
- `deep` Whether to make a deep clone.

Super classes
mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> PipeOpReweighingOversampling

Methods

Public methods:
- PipeOpReweighingOversampling$new()
- PipeOpReweighingOversampling$clone()

Method `new()`:

Usage:
PipeOpReweighingOversampling$new(id = "reweighing_os", param_vals = list())

Arguments:
- `id` ‘character’
 - The PipeOp’s id.
- `param_vals` ‘list’
 - A list of parameter values.

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
PipeOpReweighingOversampling$clone(deep = FALSE)

Arguments:
- `deep` Whether to make a deep clone.

References

See Also

Other PipeOps: mlr_pipeops_equalized_odds, mlr_pipeops_explicit_pta
Examples

```r
library("mlr3")
library("mlr3pipelines")

reweighing = po("reweighing_wts")
learner_po = po("learner", learner = lrn("classif.rpart"))

data = tsk("adult_train")
graph = reweighing %>>% learner_po
glrn = GraphLearner$new(graph)
glrn$train(data)
tem = glrn$predict(data)
tem$confusion
```

report_datasheet
Create a Datasheet for Documenting a Dataset

Description

Creates a new rmarkdown template with a skeleton questionnaire for dataset documentation. Uses the awesome markdown template created by Chris Garbin from Github.

Usage

```r
report_datasheet(filename = "datasheet.Rmd", edit = FALSE, build = FALSE)
```

Arguments

- `filename` (character(1))
 File path or name for new file that should be created.
- `edit` (logical(1))
 TRUE to edit the template immediately.
- `build` (logical(1))
 Should the report be built after creation? Initialized to FALSE.

Value

Invisibly returns the path to the newly created file(s).

References

See Also

Other fairness_reports: `report_fairness()`, `report_modelcard()`
report_fairness

Examples

```r
report_file = tempfile()
report_datasheet(report_file)
```

Description

Creates a new **rmarkdown** template with a skeleton of reported metrics and visualizations. Uses the awesome markdown template created by Chris Garbin from Github.

Usage

```r
report_fairness(
  filename = "fairness_report.Rmd",
  objects,
  edit = FALSE,
  check_objects = FALSE,
  build = FALSE
)
```

Arguments

- `filename` *(character(1))*
 File path or name for new file that should be created.

- `objects` *(list())*
 A named list of objects required for the fairness report. Objects are saved as `<name>.rds` in the new folder created for the report.
 - `task` :: The Task a report should be created for.
 - `resample_result` :: A `mlr3::ResampleResult` result to be analyzed.
 - `...` :: any other objects passed on for the report.

- `edit` *(logical(1))*
 TRUE to edit the template immediately.

- `check_objects` *(logical(1))*
 Should items in objects be checked? If FALSE, no checks on object are performed.

- `build` *(logical(1))*
 Should the report be built after creation? Initialized to FALSE.

Value

Invisibly returns the path to the newly created file(s).
See Also

Other fairness_reports: report_datasheet(), report_modelcard()

Examples

```r
library("mlr3")
report_file = tempfile()
task = tsk("compas")
learner = lrn("classif.rpart", predict_type = "prob")
rr = resample(task, learner, rsmpp("cv", folds = 3L))
report_fairness(report_file, list(task = task, resample_result = rr))
```

report_modelcard

Create a Modelcard

Description

Creates a new rmarkdown template with a skeleton questionnaire for a model card. Uses the awesome markdown template created by Chris Garbin from Github.

Usage

```r
report_modelcard(filename = "modelcard.Rmd", edit = FALSE, build = FALSE)
```

Arguments

- `filename` (character(1))
 File path or name for new file that should be created.
- `edit` (logical(1))
 TRUE to edit the template immediately.
- `build` (logical(1))
 Should the report be built after creation? Initialized to FALSE.

Value

Invisibly returns the path to the newly created file(s).

References

See Also

Other fairness_reports: report_datasheet(), report_fairness()
task_summary

Examples

```r
code

report_file = tempfile()
report_modelcard(report_file)
```

Task summary for fairness report

Description

Create the general task documentation in a dataframe for fairness report. The information includes

- Audit Date
- Task Name
- Number of observations
- Number of features
- Target Name
- Feature Names
- The Protected Attribute

Usage

```r
code

task_summary(task)
```

Arguments

- task: Task

Value

data.frame containing the reported information

Examples

```r
code

library("mlr3")
task_summary(tsk("adult_train"))
```
Index

* **PipeOps**
 - mlr_pipeops_equalized_odds, 23
 - mlr_pipeops_explicit_pta, 25
 - mlr_pipeops_reweighing, 27

* **datasets**
 - mlr_learners_fairness, 20
 - mlr_measures_fairness, 21

* **data**
 - adult, 2
 - compas, 5

* **fairness_reports**
 - report_datasheet, 30
 - report_fairness, 31
 - report_modelcard, 32

 adult, 2
 adult_test (adult), 2
 adult_train (adult), 2

 BenchmarkResult, 4, 9, 10

 character, 10
 compare_metrics, 4
 Compas (compas), 5
 compas, 5, 5
 compute_metrics, 7

 data.table(), 11
 dictionary, 14

 fairness_accuracy_tradeoff, 8
 fairness_prediction_density, 10
 fairness_tensor, 11

 groupdiff_absdiff, 15
 groupdiff_absdiff (groupdiff_tau), 12
 groupdiff_absdiff (), 14
 groupdiff_diff (groupdiff_tau), 12
 groupdiff_tau, 12
 groupdiff_tau (), 14
 groupwise_metrics, 13, 20

 Learner, 27, 28
 logical, 13, 20

 mean(), 16
 Measure, 4, 9
 MeasureFairness, 14, 16, 20, 21
 MeasureFairnessComposite, 14, 15, 16
 MeasureFairnessConstraint, 17
 MeasurePositiveProbability
 (mlr_measures_positive_probability), 22
 MeasureSubgroup, 13, 19, 21
 mlr3::Measure, 13, 14, 16, 17, 19, 22
 mlr3::Measure(), 14, 19
 mlr3::ResampleResult, 31
 mlr3::Task(), 13
 mlr3pipelines::PipeOp, 24, 26, 28, 29
 mlr3pipelines::PipeOpTaskPreproc, 26, 28, 29

 mlr_learners_fairness, 20
 mlr_measures, 14
 mlr_measures_classif.ce, 14
 mlr_measures_classif.fpr, 14, 19
 mlr_measures_fairness, 21
 mlr_measures_positive_probability, 22
 mlr_pipeops_equalized_odds, 23, 27, 29
 mlr_pipeops_explicit_pta, 25, 25, 29
 mlr_pipeops_reweighing, 25, 27, 27
 msr(classif.acc), 9

 PipeOp, 23–28
 PipeOpEOd (mlr_pipeops_equalized_odds), 23
 PipeOpExplicitPta
 (mlr_pipeops_explicit_pta), 25
 PipeOpReweighingOversampling
 (mlr_pipeops_reweighing), 27
 PipeOpReweighingWeights
 (mlr_pipeops_reweighing), 27
 PipeOpTaskPreproc, 23–28
INDEX

PredictionClassif, 4, 9–11, 23
R6, 15, 16, 18, 19
R6::R6Class, 6
R6Class, 23, 25, 27
report_datasheet, 30, 32
report_fairness, 30, 31, 32
report_modelcard, 30, 32, 32
ResampleResult, 4, 9–11
Task, 9, 10, 13, 21, 23, 26–28, 31, 33
Task(), 4, 8–10, 12–14, 16, 17, 21
task_summary, 33
TaskClassif, 4, 6, 9–11, 23, 26, 28